p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22.78C25, C42.80C23, C23.130C24, C24.503C23, C22⋊22- 1+4, C4○D4⋊18D4, (D4×Q8)⋊16C2, Q8○(C4⋊D4), D4○(C22⋊Q8), D4.58(C2×D4), C4⋊Q8⋊30C22, Q8.59(C2×D4), D4⋊5D4⋊15C2, D4⋊6D4⋊18C2, Q8⋊5D4⋊15C2, (C4×D4)⋊36C22, (C2×C4).71C24, (C4×Q8)⋊38C22, C2.30(D4×C23), C4⋊C4.292C23, C4⋊D4⋊21C22, C4.119(C22×D4), C22⋊Q8⋊95C22, (C2×D4).299C23, C4.4D4⋊24C22, C22⋊C4.18C23, (C2×2- 1+4)⋊7C2, (C2×Q8).443C23, (C22×Q8)⋊31C22, C22.12(C22×D4), C22.19C24⋊25C2, C42⋊C2⋊33C22, C22≀C2.26C22, (C23×C4).605C22, (C22×C4).352C23, C22.D4⋊3C22, C2.19(C2×2- 1+4), C2.17(C2.C25), (C22×D4).598C22, C23.38C23⋊20C2, C23.33C23⋊16C2, C22.31C24⋊12C2, (C2×C4⋊C4)⋊69C22, (C2×C4).666(C2×D4), (C2×C22⋊Q8)⋊75C2, (C22×C4○D4)⋊24C2, (C2×C4○D4)⋊26C22, (C2×C22⋊C4).379C22, SmallGroup(128,2221)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.78C25
G = < a,b,c,d,e,f,g | a2=b2=d2=e2=f2=1, c2=g2=a, ab=ba, dcd=gcg-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 1156 in 761 conjugacy classes, 430 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4⋊Q8, C23×C4, C22×D4, C22×Q8, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C4○D4, 2- 1+4, C23.33C23, C2×C22⋊Q8, C22.19C24, C23.38C23, C22.31C24, D4⋊5D4, D4⋊6D4, Q8⋊5D4, D4×Q8, C22×C4○D4, C2×2- 1+4, C22.78C25
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2- 1+4, C25, D4×C23, C2×2- 1+4, C2.C25, C22.78C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 7)(2 6)(3 5)(4 8)(9 23)(10 22)(11 21)(12 24)(13 31)(14 30)(15 29)(16 32)(17 28)(18 27)(19 26)(20 25)
(1 3)(2 26)(4 28)(5 7)(6 19)(8 17)(9 11)(10 32)(12 30)(13 15)(14 24)(16 22)(18 20)(21 23)(25 27)(29 31)
(1 11)(2 12)(3 9)(4 10)(5 21)(6 22)(7 23)(8 24)(13 20)(14 17)(15 18)(16 19)(25 29)(26 30)(27 31)(28 32)
(1 21 3 23)(2 24 4 22)(5 9 7 11)(6 12 8 10)(13 25 15 27)(14 28 16 26)(17 32 19 30)(18 31 20 29)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,7)(2,6)(3,5)(4,8)(9,23)(10,22)(11,21)(12,24)(13,31)(14,30)(15,29)(16,32)(17,28)(18,27)(19,26)(20,25), (1,3)(2,26)(4,28)(5,7)(6,19)(8,17)(9,11)(10,32)(12,30)(13,15)(14,24)(16,22)(18,20)(21,23)(25,27)(29,31), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)(25,29)(26,30)(27,31)(28,32), (1,21,3,23)(2,24,4,22)(5,9,7,11)(6,12,8,10)(13,25,15,27)(14,28,16,26)(17,32,19,30)(18,31,20,29)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,7)(2,6)(3,5)(4,8)(9,23)(10,22)(11,21)(12,24)(13,31)(14,30)(15,29)(16,32)(17,28)(18,27)(19,26)(20,25), (1,3)(2,26)(4,28)(5,7)(6,19)(8,17)(9,11)(10,32)(12,30)(13,15)(14,24)(16,22)(18,20)(21,23)(25,27)(29,31), (1,11)(2,12)(3,9)(4,10)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)(25,29)(26,30)(27,31)(28,32), (1,21,3,23)(2,24,4,22)(5,9,7,11)(6,12,8,10)(13,25,15,27)(14,28,16,26)(17,32,19,30)(18,31,20,29) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,7),(2,6),(3,5),(4,8),(9,23),(10,22),(11,21),(12,24),(13,31),(14,30),(15,29),(16,32),(17,28),(18,27),(19,26),(20,25)], [(1,3),(2,26),(4,28),(5,7),(6,19),(8,17),(9,11),(10,32),(12,30),(13,15),(14,24),(16,22),(18,20),(21,23),(25,27),(29,31)], [(1,11),(2,12),(3,9),(4,10),(5,21),(6,22),(7,23),(8,24),(13,20),(14,17),(15,18),(16,19),(25,29),(26,30),(27,31),(28,32)], [(1,21,3,23),(2,24,4,22),(5,9,7,11),(6,12,8,10),(13,25,15,27),(14,28,16,26),(17,32,19,30),(18,31,20,29)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2K | 2L | ··· | 2P | 4A | ··· | 4J | 4K | ··· | 4AA |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | 2- 1+4 | C2.C25 |
kernel | C22.78C25 | C23.33C23 | C2×C22⋊Q8 | C22.19C24 | C23.38C23 | C22.31C24 | D4⋊5D4 | D4⋊6D4 | Q8⋊5D4 | D4×Q8 | C22×C4○D4 | C2×2- 1+4 | C4○D4 | C22 | C2 |
# reps | 1 | 1 | 3 | 3 | 3 | 3 | 6 | 6 | 2 | 2 | 1 | 1 | 8 | 2 | 2 |
Matrix representation of C22.78C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 2 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 3 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,2,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,2,0],[1,4,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,2] >;
C22.78C25 in GAP, Magma, Sage, TeX
C_2^2._{78}C_2^5
% in TeX
G:=Group("C2^2.78C2^5");
// GroupNames label
G:=SmallGroup(128,2221);
// by ID
G=gap.SmallGroup(128,2221);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,224,477,1430,570,1684,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=d^2=e^2=f^2=1,c^2=g^2=a,a*b=b*a,d*c*d=g*c*g^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations